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SECTION I

INTRODUCTION

The present report describes some examples for Brandt's

multigrid method (Ref. 1). The primary purpose is to gain some

direct working experience. We have not used ready-made programs

which, presumably, are available by now, and we have even

disregarded some of the finer points of Ref. 1. The examples

chosen are simple but not entirely trivial; we seek solutions to

the Helmholtz equation for frequencies which exceed the lowest

eigenfrequency of the problem. Cases of this kind are included

in Brandt's work, at least in principle; but additional considerations

are needed if the frequency is above that pertaining to the lowest

eigenvalue and in particular if the frequency is close to one of

the eigenvalues. In this respect, there is an element of novelty

in the present discussions. To obtain results which are completely

satisfactcry in the latter case, one needs the eigenfunctions

which pertain to the eigenvalues in the vicinity of the driving

frequency. A modification of Brandt's procedure by which such

eigenvalues and eigenfunctions can be computed is therefore

included.

The work was initiated because of its possible usefulness

for the flutter problem. One must realize, however, that for

this problem the boundary conditions at a large distance are of

a nature which precludes the occurrence of standing waves. The

eigenvalue problem as such has no direct bearing on the flutter

problem. In other respects Brandt's multigrid approach is likely

to be very useful for problems of this kind, especially if the

frequencies are not low.
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SECTION II

DESCRIPTION OF THE SAMPLE PROBLEM

The region for which the numerical solution of the Helmholtz

problem is carried out is square (Fig. 1). Along the boundary of

the region, Dirichlet conditions are prescribed. The fine grid

is obtained by dividing each side of the square into 12 intervals.

The grid size of the coarse grid is four times that of the fine

grid. This choice is not optimal; Brandt suggests a ratio of 2:1

for the grid parameters. Brandt envisages the use of more than

two grids, while our examples use only two grids. If there are

more than two grids, then one must decide when one should go to

a finer or to a coarser grid. In this regard the present example

fails to cover all aspects of Brandt's procedure.

The Helmholtz equation reads

X o (1)

where i (the square of the frequency) has a fixed value. The

difference form of this equation is

j.= ..;H (2)

where i and j give the numbering of the grid in the x and y

directions, respectively, and h is the distance between adjacent

grid points. The boundary conditions are

& .(3)

In the fine grid, one has 121 unknowns (the values of ii at the

inner grid points). In the coarse grid, one has a system of four

equations.

Because of the lack of an inhomogeneous term, this system

has only the trivial solution ij = 0 unless p is an eigenvalue.

The values of i which arise in the course of the present

computations therefore give the errors immediately. The

2
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solution process ought to reduce the errors to zero. In a more

realistic problem the error never appears separately; one encounters

approximate expressions, ,ij, which are the sum of the exact

solution and the current error. The presence of errors manifests

itself in terms of "residuals" obtained by substituting the

current approximation into the difference form (Eq. (2)) of the

differential equation. In our discussions we are interested only

in solutions to the difference equations, the question of truncation

error is of a different nature.
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SECTION III

EIGEN:VALUES AND EIGENFUNCTIONS

In the present example one can determine the eirjenvai 'es

and eigenfunctions for the difference form of th2 Laplace operator

in a closed form. Of course this information should not be used

in the numerical work; it is used to show for which values of

difficulties may be expected.

The (nonnormalized) eigenfunctions are given by

Substituting this into Eq. (2) one obtains

(%,,v , 1'. -i (5)

The eigenvalues pertaining to Eq. (1) are

)/2

The two expressions approach each other if n and m are sufficiently

small.

For the coarse arid the eigenfunctions are again given by

Eq. (4) with i 4 and 8, and k = 4 and 8. The pertinent eigen-

values are

The eigenfunctions for the coarse grid can be found simply

by inspection

w-Z" ,=/ , = ,+- %/ ,. /+t "-

ft€ 2 i-t .' - _
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SECTION IV

COMPUTATION IF 11 IS NOT AN EIGENVALUE

The computation proceeds in the following steps:

1. Introduction of a starting solution for the fine grid.

2. Fine grid iterations (in our examples carried out by

the alternating direction method). Terminate the procedure if

it converges.

3. If the fine grid iterations converge slowly or diverge,

then one computes the residuals for the fine grid and transfers

them to the coarse grid. (According to Brandt it is most economical

if one simply evaluates the fine grid residuals for the points

of the coarse grid.)

4. Computation of corrections in the coarse grid, either

by iteration or by direct solution of the system of equations for

the coarse grid.

5. One transfers these corrections to the fine grid by

means of an interpolation and adds these corrections to the fine

grid values of , obtained at the end of step 2. Return toik

step 
2.

We make the following observation: Steps 3, 4 and 5 are

carried out in ordr to remove, as well as possible, long wave

contributions which appear in the results of the fine grid

iterations. This purpose may not be achieved by the procedure

just described if it is close to one of the ei(ienvalues of the

problem.

This difficulty can be ascribed to the fact that the

ciqenvalues are not the same in the coarse and in the fine grid.

The following example shows that the corrections obtained in the

coarse grid may be quite unrelated to the corrections needed in

the fine grid. Assume that it coincides with a coarse grid

eiqenvalue. The corrections in the coarse qrid are obtained

7



by solving an inhomogeneous system of simultaneous linear

equations. If vi 3s a coarse grid eigenvalue, then the solution

will be infinite although the contribution of long wave errors

in the fine grid is definitely finite.

The elimination of long wave contributions can actually

be accomplished without solving the problem in the coarse grid.

One notices that the coarse grid corrections depend upon a number

of parameters which is equal to the number of grid points in the

coarse grid. By an interpolation one obtains a fine grid correction

for each of these possible coarse grid corrections. The elimination

of long wave contributions in the fine grid can therefore be

accomplished by adding to the current fine grid approximations a

linear combination of the interpolated coarse grid corrections.

The coefficients with which these functions are multiplied are

determined in such a manner that, as far as possible, the long

waves are eliminated from the fine grid approximation. The

criteria by which these coefficients are determined must, of

course, be derived from the fine grid residuals (see the remark

at the end of Section II). Accordingly, one computes in advance

the residuals in the fine grid belonging to the interpolated

coarse grid corrections. In the present case there are four

linearly independent residual functions of this kind. Assume

that one has carried out a number of alternating direction steps.

One then possesses a fine grid approximation and pertaining to

it a fine grid residual. From this residual, and subsequently

from the approximation for , one wants to remove long wave

contributions. Let R(f) be the residual for the approximation

obtained at the end of the alternating direction iteration. Let

R( coarse, i) be the residual for the ith coarse grid expression
after interpolation to the fine grid. In the present example

i = 1,...,4. According to the idea just described above, we form

It is our goal to determine the coefficients ai so that long

wave contributions are (approximately) removed from R.

8



This task could be done perfectly if exact long wave

eigenfunctions were known. The long wave eigenfunctions are

approximated by linear combinations of the interpolated coarse

grid expressions 4coarse,i" (If one would compute the coarse

grid eigenfunctions and then proceed to the fine grid by

interpolation, then one would obtain just such expressions.)

This leads to the following procedure. Let the scalar product

of two functions u and v defined at the grid points be given by

z i a . r . (9)

Now we impose the requirement that

This leads to the system of equations

/ (11)

where M is a matrix with components

O)dI( (12)

L is a vector whose n th component is given by an' r is a vector

whose m t h component is given by

The matrix Mm,n is symmetric. Let L be the difference operator

defined by Eq. (2). Then one can define an eigenvalue problem

(L -A,-) = o

The eigenfunctions k are orthogonal to each other

f-4) 7O Ek -0, . (14)

The residual pertaining to Pk is given by

PW4' - /600- ), j(15)

Now assume that 4coarse,i is represented in the form

9



Then one has

Z 
'W

Finally, because of the orthogonality relations Eq. (14)

=

Hence

(16)

The system Eq. (11) arises by forming scalar products of

the expression Eq. (8) with the functions coarse,m* In a first

version we had introduced the condition that the scalar product

of the residual with itself should be a minimum. This leads to a

condition similar to Eq. (10), except that now the weight functions

are given by R((coarse,m) , rather than coarsem itself. If ji
is close to the square of an eigenfrequency, then one of the

eigenvalues X is close to zero, and the contribution of the

pertinent eigenfunction is nearly suppressed in the weight function

R(,'co ar se ,m ) . This is undesirable for the purpose of the computa-

tion is to remove the contributions of these eigenfunctions.

According to these considerations, we replace steps 3, 4 and

5 by the following procedure. In preparing for the computations,

one determines the elements of the matrix M (a 4 by 4 matrix in the

present example). At the end of step 2, that is, after one has

decided that the convergence is too slow one evaluates the residual

R(f) pertaining to the current approximation, forms the

components of the vector r, Eq. (13), and then solves the system

Eq. (11) for the vector a.

With the values of ai so obtained, one forms a corrected

function

C(1 Z Co L. rt (17)
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and returns to the beginning of step 2. Notice that the system

for the a i has the same dimension as the system of equations which

one would obtain in a direct treatment of the coarse mesh (step 4

of the procedure outline above).
th

One notices that if p is close to the square of the j eigen-

frequency, say n, then the contribution of the jth eigenfunction to

the expressions R( coarse,n ) and consequently to the elements of
the matrix M is small. (Of course the contribution of this

eigenfunction to the inhomogeneous term R(f) is also small.)

Consequently, the effect of this eigenfunction on the determination

of the coefficients a i becomes small and the goal of the computa-
tion, namely the approximate removal of the eigenfunctions 4i from

the current approximation 4 (see Eq. 17) is not achieved. The

interval of values p in which this failure occurs depends upon

the character of the functions ,coarse,n'S, for this determines

how strongly eigenfunctions other than the k (here k = 1,..., 4)

occur in the ,coarse,n'S. These other eigenfunctions will then

play the dominant role in the matrix M and lead to faulty values

of a. The width of the interval 1 in which the approach fails

depends upon the interpolation formula by which one proceeds from

the coarse to the fine mesh. Best results would be obtained if

the functions coarse,n span the same subspace as the eigenfunctions

(n (in our case n = 1,...,4).

These observations are borne out by our computations, which
have been carried out for different interpolation routines

from the coarse to the fine grid. In routine 1 linear interpolation

has been used. In routine 2, we have used a third degree inter-

polation formula for both the x and y direction. (This is possible

in the present example because the eigenfunctions arise from a

product hypothesis and because, with the boundary points

included, the coarse grid has only 4 points in the x, and 4

points in the y direction.) In routine 3, exact eigenfunctions

are used.

11



Figure 2 gives a survey of the results. The horizontal

axis shows the values of 1/2 (one might just as well use v as

independent variable). The eigenfrequencies for which we expect

difficulties are shown by short heavy lines. The vertical

directions show the number of iteration steps to convergence.
If convergence is not attained by five iterations but

might have been attained by more iterations, then the solid

lines are drawn up to the upper end of the graph. Divergence is

shown by dashed lines. As expected, there is an interval around

the eigenfrequencies where the method fails to converge. This

interval becomes smaller as one uses a better interpolation

formula. If one uses the exact eigenfunctions to remove long

wave perturbations from the residual, then one has convergence

even very close to the eigenvalues. In this case, the size of

the interval depends only on the precision with which the

computations are carried out. In all cases the convergence is

slower for larger values of p. No convergence is obtained if

p is too large.

12
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SECTION V

EIGENVALUE PROBLEMS

The eigenvalue problems for the Helmholtz equation and the

Laplace equation are the same except for a shift of the eigen-

values by a constant amount. The following discussion is there-

fore restricted to the eigenvalue problem for the Laplace

operator. Let

/i (18)

Then we consider

/20~)1 =z -0c (19)

with the Dirichlet boundary conditions formulated above.

The computations start with approximations for a limited

number of eigenfunctions. Such approximations can be obtained

from a coarse grid formulation with a subsequent interpolation

to the fine grid. In our example, approximations to the first

four eigenfunctions have been determined. If one wants to compute

the lowest eigenfunction only, then it will probably suffice if

one derives from the coarse grid an approximation for only the

lowest eigenfunction.

The discussion includes cases where a number of eigenvalues

lie close together, for this happens frequently in multidimensional

problems. In the present example, for instance, one has

coincidence of the second and third eigenvalue. The coarse grid

approximation will show for which eigenfunctions this is the

case.

The number of eigenfunctions for which approximations are

introduced is restricted; it cannot exceed the number of grid

points in the coarse mesh, but one might use even a smaller number.

The subscripts i and j which will appear subsequently refer to

these eigenfunctions. Let S be the subset of subscripts for those

eigenfunctions which are treated simultaneously because the

14



corresponding eigenvalues lie close together or coincide. The

approximations to the eigenfunctions designated by the subset S

are updated in each iteration step, those not pertaining to S

remain unchanged. For the latter one always uses the best

approximations available. In particular, one uses the exact

eigenfunctions (usually obtained in previous phases of the

procedure) if they are available.

We shall denote eigenfunctions and their approximations

by ,,if if i S and by if j S. In our example we have for

the first eigenvalue i = 1, j = 2, 3, 4; for the second and third

eigenvalues i = 2 and 3; j = 1 and 4; and for the fourth eigen-

value i = 4, j =1, 2, 3.

Let a superscript p denote the iteration number. One iteration

step leads from !i (p) to i (p+l) f S. The iteration starts
with approximations i(0 ) obtained by the interpolation from the

coarse to the fine grid. We describe immediately the general

case where S contains more than 1 element. Single eigenvalues

are obtained by an obvious specialization.

The following steps are carried out.

1. Choose the subset S, provide approximations for the
(0) iES

if j / S, and starting approximations i S.

(p)2. Update the values of and form an intermediate update

to the approximations i S.

3. Provide, separately for each i, i c S, a second update

by approximately eliminating long wave contributions due to the

:.'s, j S.

4. Smooth out by iteration, separately for each i c S
the twice updated functions ip. After a number of these steps

this process gives the final approximation ,. (p+l) If one has

convergence, then one updates the eigenvalues i and terminates

the computation. Otherwise one returns to step 2.

We discuss these steps in detail and provide the necessary

equations. In step 2 we set

15



)(20)

Lr

with coefficients B. so far unknown. In general, such functions

Q will not satisfy Eq. (18),

even if one considers i and the i's as arbitrary. To obtain

conditions for ji and the R.'s we apply to the last expression weight

function (p) , ilc S. Then one obtains the eigenvalue problem

(Al SC(21)

where A is a vector with components 6i, i c S. The elements of

M (I ) and M (2 ) are given by

H. Z* t' , h",e " (22)

"'I.!

(For the solution of this problem, one will, of course, change

the subscripts.) The solution of the eigenvalue problem gives

the updated eigenvalues li(p+l) and eigenvectors i and

subsequently (from Eq. (20)) updated approximations i"

In the present setting the matrices M (I ) and M (2 ) are

symmetric (see the discussion in Section IV). Because of lack

of precision, there may arise deviations from symmetry if one

evaluates the matrix elements separately. It is then desirable

to make the matrices symmetric. If the eigenvalues 1ii(p+l) are

different, then one obtains eigenvectors 8i which are orthogonal

to each other. If some of the Ui (p+l)'s coincide, then one can

construct vectors 7i which are orthogonal to each other. Critical

are cases where eigenvalues i (p + I ) are different but lie very

close together. The eigenvectors obtained in such a case will

be different and orthogonal, but small errors in the matrices will

lead to eigenvectors which are quite different (although taken

together they will always span the same or approximately the

same subspace of the 8 space). It is then possible that the

16



eigenvectors change considerably from iteration to iteration

depending upon small changes in the matrices. This will

introduce a numerical instability. For eigenvalues which nearly

coincide one must therefore override the automatic determination

of the eigenvectors and define eigenvectors within the pertinent

subspace which change very little from iteration to iteration.

We illustrate by example another disturbing phenomenon

which may occur. We consider for this purpose the computation of

the second and third eigenfunctions. In this case, one encounters

2 by 2 matrices which have nearly diagonal form. Let us idealize

them as diagonal matrices.

The determinant vanishes if

(d7 taM. / (1) (A)

Hence

A ' -'"

I,. 24

To obtain the eigenvectors one substitutes these values of vi.

One obtains in the first case

0d
/itl, ;tl"i42 []= 0 .

Hei.ce, from the second of these equations

A= 0 4A= /

With inaccurate numbers the zeros which appear here will be

small numbers, which are uncertain because of the lack of precision.

If one inadvertently determines the ratio of I1 to 2 from the

first equaticvn, then one will obtain a nonsensical result, while

the second equation will give the correct result. Of course,

17



a good eigenvalue routine will guard against this occurrence. A

problem may arise, however, if one uses an ad hoc program. In

the present example, the difficulty is easily avoided if one

determines the ratio of 1 to a2 from the sum of the two equations

which one obtains for the different choices of i(p+l)

If two eigenvalues coincide, then one obtains for the

determination of eigenvectorsI0 olf][A
This system of equations is satisfied by any linear combination

of S1 and B2 .With inaccurate information about the matrix elements,

one will obtain specific vectors and 82, but the form of these

vectors will depend upon the inaccuracies and may vary from

iteration to iteration. To guard against this occurrence we have

chosen 1 '3an
= 0 and p

if we found by a test that the eigenvalues are very close together.

In the following steps the functions ti with approximate

eigenvalues p (p + l ) i c S, are treated separately for each i.

In step 3 the long wave contributions due to the approximate

eigenfunctions j, j / S are approximately removed. We set

(23)

The u.'s are determined by the requirement that this expression
T J

be orthogonal to the functions S. (j. c S). One then obtains

.r ~(24)

Where a is a vector with jth component aj2' j2 / S and the matrix

elements are given by

/(1J) - (25)Ii

and

J./ (26)

18



For the actual computation a renumbering of the subscripts

will be carried out.

In our program we have actually proceeded in a different

manner because of a somewhat uncritical analogy to the procedure

for the inhomogeneous problem. We believe, however, that the

method descr-bed above is preferable. We have formed the

residual pertaining to Eq. (23)

and obtained conditions for the j 2 by postulating that this

expression be orthogonal to the tjl's, jl / S. With the values of

so found one then compates 4 from Eq. (23).

In step 4, one eliminates short wave perturbations by an

iterative procedure (in our case by the alternating direction

method). This is done separately for all values of i, i r S.

If these iterations converge, then one terminates the procedure

and proceeds to another set S of eigenvalues. Before the

termination, one may update the eigenvalues b by the method of

step 2 for a last time. If the convergence is slow, then one

goes back to step 2 using the expression ,i obtained by the

alternating direction iteration as starting approximation
(p+l)

"i
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